

CENTRALINA PER LA PULIZIA
DEI CIRCUITI DI RAFFREDDAMENTO DEGLI
STAMPI

INTRODUZIONE:

L'efficienza dei processi di stampaggio a iniezione è un fattore critico per la competitività industriale. Tuttavia, un problema silenzioso mina la produttività e incrementa i costi: il graduale deterioramento dei sistemi di raffreddamento degli stampi.

Perdite nascoste e costi crescenti:

Ogni anno, le aziende si trovano a fronteggiare perdite finanziarie significative a causa della progressiva diminuzione dell'efficienza dei sistemi di raffreddamento. Questo calo di prestazioni si manifesta attraverso un allungamento dei tempi di ciclo, un aumento degli scarti di produzione e la necessità di interventi di manutenzione e regolazione sempre più frequenti. Questi fattori non solo incidono sui costi operativi, ma possono anche compromettere la qualità del prodotto finito e ridurre la competitività aziendale. Adottare soluzioni efficaci per il mantenimento e l'ottimizzazione dei circuiti di raffreddamento diventa quindi essenziale per garantire efficienza produttiva e sostenibilità economica nel lungo periodo.

La causa principale: incrostazioni e corrosione:

La radice di questi problemi risiede nella formazione di depositi e ruggine all'interno dei canali di raffreddamento degli stampi e degli scambiatori di calore.

Conseguenze dirette:

La causa principale è la formazione di depositi e ruggine nei canali di raffreddamento. Acqua di scarsa qualità, temperature elevate e zone con flusso ridotto accelerano questo processo. Le incrostazioni, come un isolante termico, impediscono un raffreddamento efficace, causando variazioni dimensionali nei pezzi e richiedendo continue regolazioni.

Un dato tecnico fondamentale evidenzia l'impatto di questi depositi: un solo millimetro di calcare ha un effetto isolante equivalente a quello di 10 mm di acciaio. Questo significa che la presenza di calcare nei circuiti di condizionamento equivale a spostare virtualmente i canali di raffreddamento a diversi millimetri di distanza dalla superficie da termoregolare, compromettendo drasticamente l'efficienza termica dell'intero sistema.

LA SOLUZIONE:

La centralina MILLUTENSIL è progettata per eliminare efficacemente depositi di calcare e altre impurità dai circuiti di raffreddamento degli stampi, ripristinando la loro piena efficienza. Si presenta come un'unità compatta e integrata, concepita per offrire una soluzione completa nella manutenzione dei circuiti di raffreddamento degli stampi.

Funzionalità e Componenti:

L'unità integra in sé tutti i componenti necessari per un'operatività efficiente: un serbatoio per la soluzione chimica attiva, un serbatoio per l'acqua di risciacquo, una vasca di raccolta, tubazioni in PP e PVC, valvole in acciaio inox, una serpentina di riscaldamento, un sensore di temperatura in acciaio inox, un termostato e una pompa in acciaio inox con convertitore di frequenza. Questa completezza strutturale consente di gestire l'intero processo di pulizia in modo

Tutto sotto controllo:

Un tratto distintivo della centralina MILLUTENSIL è il monitoraggio visivo immediato del flusso, reso possibile da un segmento trasparente del circuito. Questo sistema visivo permette di monitorare con facilità e in tempo reale lo stato dell'acqua, fornendo un'indicazione chiara dell'efficacia del processo di pulizia. In aggiunta, la centralina è dotata di un flussometro digitale per una misurazione precisa e puntuale del flusso, offrendo così un controllo completo e dettagliato del processo.

Mobilità e Struttura:

La struttura è autoportante, realizzata con pannelli in PP saldati, eliminando la necessità di un telaio di supporto. La centralina è facilmente trasportabile grazie a quattro ruote, due fisse e due girevoli.

FUNZIONAMENTO DELLA CENTRALINA MILLUTENSIL

La centralina MILLUTENSIL è progettata per eseguire una pulizia efficace dei circuiti di raffreddamento degli stampi attraverso un processo in due fasi che avviene a una temperatura controllata di 50 gradi Celsius, riscaldando la sostanza chimica attiva per ottimizzarne l'efficacia.

Fase 1: Disincrostazione

La prima fase del processo consiste nella circolazione di un liquido solvente all'interno del circuito di raffreddamento dello stampo. Questo solvente è specificamente formulato per agire sui depositi di calcare, ossidi metallici e altre impurità che possono accumularsi nel tempo, ostacolando il corretto funzionamento del sistema. Attraverso un'azione chimica mirata, il solvente dissolve progressivamente i residui incrostati, facilitandone la rimozione. Questo passaggio è essenziale per ripristinare l'efficienza termica del circuito, migliorando la capacità di scambio termico e prevenendo eventuali malfunzionamenti dovuti a ostruzioni parziali o totali.

Fase 2: Passivazione

Una volta completata la disincrostazione, si procede con la fase di passivazione, che prevede la circolazione di un liquido passivante all'interno del circuito. Questo trattamento ha un duplice scopo: da un lato, neutralizza eventuali residui di solvente rimasti, evitando qualsiasi possibile reazione chimica indesiderata; dall'altro, crea un sottile strato protettivo sulle superfici interne del circuito. Questa barriera aiuta a prevenire la corrosione dei materiali, specialmente nei componenti metallici più sensibili, prolungando così la durata dello stampo e mantenendone l'efficienza operativa nel tempo. Una corretta passivazione è fondamentale per garantire che il circuito di raffreddamento rimanga pulito e protetto da futuri accumuli di incrostazioni o ossidazioni.

Caratteristiche Operative:

La centralina MILLUTENSIL è progettata per garantire un funzionamento efficiente, affidabile e sicuro nel tempo. Grazie alla sua tecnologia avanzata, assicura prestazioni ottimali anche in condizioni di utilizzo prolungato. È dotata di un sistema innovativo che consente lo svuotamento automatico del circuito di condizionamento, riducendo i tempi di intervento e semplificando le operazioni di manutenzione. Questo meccanismo non solo facilita la gestione del dispositivo, ma contribuisce anche a prevenire eventuali accumuli di residui o impurità, migliorando così la longevità e l'efficienza dell'intero impianto.

Importante:

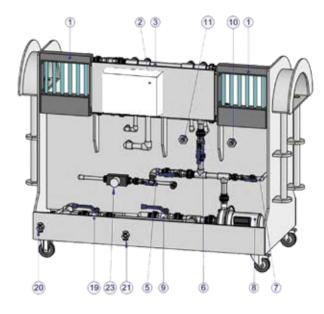
La centralina MILLUTENSIL è in grado di pulire i circuiti solo se è garantita la circolazione del liquido. In caso di ostruzioni complete, potrebbe essere necessario un intervento preliminare per ripristinare almeno parzialmente il flusso.

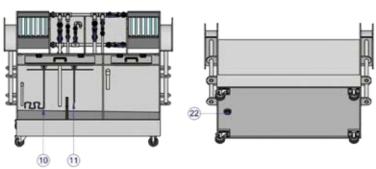
CONFIGURAZIONI DISPONIBILI

Per rispondere alle diverse esigenze di produzione, la centralina MILLUTENSIL è disponibile in due configurazioni principali, progettate per la pulizia di 6 o 12 circuiti di raffreddamento.

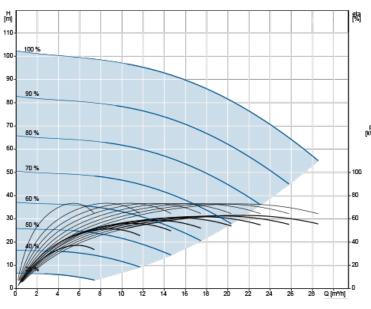
Ogni configurazione è ottimizzata in termini di capacità dei serbatoi per garantire un trattamento efficace e completo.

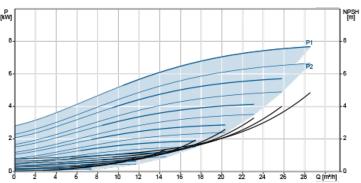
FCD6NPFM:


- Progettata per la pulizia di 6 circuiti di raffreddamento.
- Capacità serbatoio soluzione di pulizia: 120 litri.
- Capacità serbatoio di risciacquo: 80 litri.



FCD12NPFM:


- Progettata per la pulizia di 12 circuiti di raffreddamento.
- Capacità serbatoio soluzione di pulizia: 160 litri.
- Capacità serbatoio di risciacquo: 100 litri.



- 1. Flussometro trasparente, per il controllo visivo del flusso
- 2. Quadro elettrico, per il controllo e la gestione del sistema
- 3. Ramo di ritorno, per il ricircolo del fluido
- 4. Valvola di sfiato/soffiaggio, per la rimozione dell'aria dai circuiti
- 5. Valvola di scarico, per lo svuotamento dei serbatoi
- 6. Valvola di ingresso, per il controllo del flusso in entrata
- 7. Ramo di circolazione, per la distribuzione del fluido nel sistema
- 8. Pompa, per garantire la movimentazione del liquido di processo
- Valvola in ingresso alla pompa del serbatoio chimico, per il dosaggio del liquido attivo
- 10. Riscaldatore, per il mantenimento della temperatura ottimale del fluido
- 11. Sensore di temperatura, per il monitoraggio e la regolazione termica
- 12. Valvola di ritorno dal serbatoio chimico, per il recupero del fluido trattante
- Valvola aggiuntiva per il soffiaggio nel serbatoio chimico, per ottimizzare il processo di pulizia
- 14. Foro di sfiato del serbatoio chimico, per garantire l'eliminazione dell'aria residua
- 15. Valvola di ritorno dal serbatoio di lavaggio, per la gestione del fluido di risciacquo
- Valvola aggiuntiva per il soffiaggio nel serbatoio di lavaggio, per eliminare residui e garantire un ciclo pulito
- Valvola di isolamento in uscita dal blocco di misurazione, per il controllo del flusso del fluido
- Valvola di ingresso nel blocco di misurazione, per regolare il flusso del liquido all'interno del sistema
- Valvola in ingresso alla pompa del serbatoio di lavaggio, per il controllo del fluido di risciacquo
- 20. Scarico del serbatoio di lavaggio, per lo smaltimento controllato del fluido usato
- 21. Scarico del serbatoio chimico, per la rimozione sicura del liquido attivo esausto
- 22. Scarico generale, per la gestione complessiva dei fluidi di processo
- 23. Flussometro digitale, per una lettura precisa del flusso durante l'operazione di pulizia

DIAGRAMMI DI EFFICIENZA

Liquido pompato = Acqua Temperatura del liquido = 20 °C Densità = 998,2 kg/m³

